<sup>i</sup>Lycée Mezria Monastir

Prof :M. Fethi

Devoir de Synthèse N°1 Classe : 3<sup>éme</sup> Tech

2011/2012

Exercice n°1 : QCM

$$1) \cos\left(-\frac{\pi}{2} - x\right) =$$

 $-\sin x$ 

 $\int \sin x$ 

cos a

2) Soit ABC un triangle équilatérale tel que :  $(\overrightarrow{AB}, \overrightarrow{AC}) \equiv \frac{\pi}{3} [2\pi]$ .

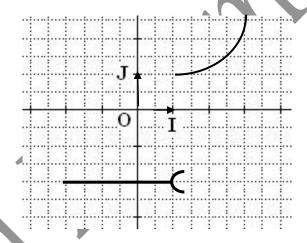
On désigne par I le milieu de [AB] alors la mesure principale (CI, CA) est :

 $\frac{\pi}{6}$ 

 $\frac{\pi}{2}$ 

 $-\frac{\pi}{6}$ 

**3)** On donne la courbe représentative d'une fonction *f* 



- f est continue à droite en 1
- f est continue à gauche en 1
- 4) Soit  $n \in \mathbb{N}$  et  $f: x \mapsto E(x)$  la fonction partie entière alors :
- $\int f$  est continue en n

- f est continue à droite en n
- **5)** Le domaine de définition de  $f(x) = \sqrt{1-x}$  est :
- $[-\infty,1]$
- IR<sub>+</sub>
- \_\_\_[1,+∞[

Exercice n°2:

I) Soit la fonction f définie sur IR par :

$$f(x) = \begin{cases} \frac{x^2 + x - 2}{x^2 - 1} & \text{si } x > 1\\ -3x^3 + \frac{5}{2}x + 2 & \text{si } x \le 1 \end{cases}$$

- 1) Etudier la continuité de f à gauche en 1.
- **2)** Etudier la continuité de f à droite en 1.
- 3) f est-elle continue en 1.

4) Déduire le domaine de continuité de f.

- II) On considère la fonction f définie par :  $f(x) = \frac{x^3 7x + 6}{x^3 x^2}$
- 1) a) Factoriser l'expression  $x^3 x^2$ 
  - b) En déduire le domaine de définition de f.
- 2) a) Vérifier que :  $x^3 7x + 6 = (x 2)(x 1)(x + 3)$ 
  - b) Calculer alors :  $\lim_{x \to 1} f(x)$
- 3) calculer  $\lim_{x\to 0^+} f(x)$  et  $\lim_{x\to 0^-} f(x)$

## Exercice n°3:

- I) Soit  $\propto \in \left[0, \frac{\pi}{2}\right]$  tel que :  $\cos \alpha + \sin \alpha = \frac{1+\sqrt{3}}{2}$
- 1) Montrer que :  $(\cos \alpha + \sin \alpha)^2 1 = 2 \cos \alpha \sin \alpha$ .
- 2) En déduire que :  $\cos \alpha \sin \alpha = \frac{\sqrt{3}}{4}$
- 3) Montrer que  $\cos \alpha$  et  $\sin \alpha$  sont les solutions de l'équation :

$$x^2 - \left(\frac{1+\sqrt{3}}{2}\right)x + \frac{\sqrt{3}}{4} = 0$$

- **4)** Vérifier que  $\left(\frac{1+\sqrt{3}}{2}\right)^2 \sqrt{3} = \left(\frac{1-\sqrt{3}}{2}\right)^2$
- **5)** Quelle sont les valeurs possibles de  $\alpha$ .
- II) Résoudre dans IR les équations suivantes :
- 1)  $1 \sqrt{2} \sin x = 0$
- 2)  $-1 + 2\cos\left(2x \frac{\pi}{3}\right) = 0$

